3,639 research outputs found

    Crossover from Two- to Three-Dimensional Behavior in Superfluids

    Full text link
    We have studied the superfluid density ρs\rho_{s} on various size-lattices in the geometry L×L×HL \times L \times H by numerical simulation of the xyx-y model using the Cluster Monte Carlo method. Applying the Kosterlitz-Thouless-Nelson renormalization group equations for the superfluid density we have been able to extrapolate to the LL \to \infty limit for a given value of HH. In the superfluid phase we find that the superfluid density faithfully obeys the expected scaling law with HH, using the experimental value for the critical exponent ν=0.6705\nu=0.6705. For the sizes of film thickness studied here the critical temperature TcT_{c} and the coefficient bb entering the equation T/(ρsH)1b(1T/Tc)1/2T/(\rho_{s} H) \propto 1-b(1-T/T_{c})^{1/2} are in agreement with the expected HH-dependence deduced from general scaling ideas.Comment: 16 pages, postscript file, 264 kbyte

    Monolayer charged quantum films: A quantum simulation study

    Full text link
    We use path-integral Monte Carlo (PIMC) to study the effects of adding a long-range repulsive Coulomb interaction to the usual Van der Waals interaction between two atoms of a submonolayer quantum film such as helium on graphite or a pure two-dimensional superfluid. Such interactions frustrate or compete with the natural tendency of the system for phase separation namely to form a macroscopic liquid or solid phase. We find that as a function of the relative strength of the long-range repulsion, surface coverage and temperature, the system undergoes a series of transformations, including a triangular Wigner-like crystal of clusters, a charge stripe-ordered phase and a fluid phase. The goal of these studies is to understand the role of quantum fluctuations when such competing interactions appear together with formation of preexisting electron pairs as might be the case in cuprate superconductors.Comment: 10 pages, 7 figures to be published in International Journal of Modern Physics

    Universal Magnetic Properties of La2δSrδCuO4La_{2-\delta} Sr_{\delta} Cu O_4 at Intermediate Temperatures

    Full text link
    We present the theory of two-dimensional, clean quantum antiferromagnets with a small, positive, zero temperature (TT) stiffness ρs\rho_s, but with the ratio kBT/ρsk_B T / \rho_s arbitrary. Universal scaling forms for the uniform susceptibility (χu\chi_u), correlation length(ξ\xi), and NMR relaxation rate (1/T11/T_1) are proposed and computed in a 1/N1/N expansion and by Mont\'{e}-Carlo simulations. For large kBT/ρsk_B T/\rho_s, χu(T)/T\chi_u (T)/T and Tξ(T)T\xi(T) asymptote to universal values, while 1/T1(T)1/T_{1}(T) is nearly TT-independent. We find good quantitative agreement with experiments and some numerical studies on La2δSrδCuO4La_{2-\delta} Sr_{\delta} Cu O_4.Comment: 14 pages, REVTEX, 1 postscript figure appende

    Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps

    Get PDF
    We investigate the equilibrium and dynamical properties of the Bose-Hubbard model and the related particle-hole symmetric spin-1 model in the vicinity of the superfluid to Mott insulator quantum phase transition. We employ the following methods: exact-diagonalization, mean field (Gutzwiller), cluster mean-field, and mean-field plus Gaussian fluctuations. In the first part of the paper we benchmark the four methods by analyzing the equilibrium problem and give numerical estimates for observables such as the density of double occupancies and their correlation function. In the second part, we study parametric ramps from the superfluid to the Mott insulator and map out the crossover from the regime of fast ramps, which is dominated by local physics, to the regime of slow ramps with a characteristic universal power law scaling, which is dominated by long wavelength excitations. We calculate values of several relevant physical observables, characteristic time scales, and an optimal protocol needed for observing universal scaling.Comment: 23 pages, 13 figure

    Nearly frozen Coulomb Liquids

    Full text link
    We show that very long range repulsive interactions of a generalized Coulomb-like form V(R)RαV(R)\sim R^{-\alpha}, with α<d\alpha<d (dd-dimensionality), typically introduce very strong frustration, resulting in extreme fragility of the charge-ordered state. An \textquotedbl{}almost frozen\textquotedbl{} liquid then survives in a broad dynamical range above the (very low) melting temperature TcT_{c} which is proportional to α\alpha. This \textquotedbl{}pseudogap\textquotedbl{} phase is characterized by unusual insulating-like, but very weakly temperature dependent transport, similar to experimental findings in certain low carrier density systems.Comment: 5 pages,4 figure

    Oscillons and oscillating kinks in the Abelian-Higgs model

    Full text link
    We study the classical dynamics of the Abelian Higgs model employing an asymptotic multiscale expansion method, which uses the ratio of the Higgs to the gauge field amplitudes as a small parameter. We derive an effective nonlinear Schr\"{o}dinger equation for the gauge field, and a linear equation for the scalar field containing the gauge field as a nonlinear source. This equation is used to predict the existence of oscillons and oscillating kinks for certain regimes of the ratio of the Higgs to the gauge field masses. Results of numerical simulations are found to be in very good agreement with the analytical findings, and show that the oscillons are robust, while kinks are unstable. It is also demonstrated that oscillons emerge spontaneously as a result of the onset of the modulational instability of plane wave solutions of the model. Connections of the obtained solutions with the phenomenology of superconductors is discussed.Comment: arXiv admin note: substantial text overlap with arXiv:1306.386
    corecore